EventTracker Search Performance

EventTracker 7.6 is a complex software application and while there is no easy formula to compute its performance, there are ways to configure and use it so as to get better performance. All data received either real-time or by file ingest (called the Direct Log Archiver) is first indexed and then archived for optimal disk utilization. When performance of a search is cross indexed, compression speed of results depend on the type of search as well as the underlying hardware.

Searches can be categorized as:
Dense – at least one result per thousand (1,000) events
Sparse – at least one result per million (1,000,000) events
Rare – at least one result per billion (1,000,000,000) events
Needle in a haystack – one event in more than a billion events

Based on provided search criteria, EventTracker consults indexing meta-data to determine if and in which archive contains events matching the search terms. As searches go from dense to needle-in-a-haystack, they move from being CPU bound to I/O bound.

Dense searches are CPU bound because matches are found easily and there is sufficient raw data to decompress. For the fastest possible response on default hardware, EventTracker will limit return results to the first (sorted by time with newest on top) 200 results displayed. This setting can of course be defeated but is provided because it satisfies the most common use case.

As the events containing the search term get to one in a hundred thousand (100,000), performance becomes more I/O bound. The reason is there is less and less data but more and more index files have to be consulted.

I/O performance is measured as latency which is a measure of the time delay from when a disk I/O request is created, until the time the disk I/O request is completed by the underlying hardware. Windows perfmon can measure average disk/sec transfer. A rule of thumb is to have this be below 25 millisec for best I/O performance.

This can be realized in various ways:
– Having different drives (spindles) for the OS/progam and archives
– Using faster disk (15K RPM performs better than 7200 RPM disks)
– Using a SAN

In larger installations with multipleVirtual Collection Points (VCP), dedicating a separate disk spindle for each VCP can help.

LIKE IT? SHARE IT!

Twitter