Archive

Prevention is Key in Cybersecurity

“You see, but you do not observe. The distinction is clear.” Sherlock Holmes said this to John Watson in “A Scandal in Bohemia.” Holmes was referring to the number of steps from the hall to the rooms upstairs. Watson, by his own admission, has mounted those steps hundreds of times, but could not say how many there were. The same can be said in the world of IT security. A lot of data, an overwhelming amount actually, is available from hundreds of sources, but rarely is it observed. Having something and getting value from it are entirely different.

This is also underlined in the story, “Peace Health employee accessed patient info unnecessarily.” On Aug. 9, a Vancouver medical center, Peace Health, discovered that an employee accessed electronic files containing protected health information, including patient names, ages, medical records, account numbers, admission and discharge dates, progress notes, and diagnoses. An investigation revealed that the employee accessed patient information between November 2011 and July 2017.

What? This had been going on for 5 years and was just discovered? It would seem this is another case of “You see but do not observe,” and indeed the distinction is clear. Log data showing what this employee was doing had been accumulating and faithfully archived, but it was never examined.

What was the impact? There was reputational damage, plus the costs incurred (letters, call center expenses, etc.), and possible fines by HHS for the HIPAA violation. Plus, there was disruption of regular tasks to investigate the extent and depth of this incident and related incidents that may have occurred.

Ben Franklin observed that an ounce of prevention is worth a pound of cure. The same is true in this case. We at EventTracker know that it’s hard to pay attention given the volume of security data that is emitted by the modern network. Therefore, we provide security monitoring as a service, so that you don’t just get more technology thrust your way, you gain the actual outcome you desire.

Contact us to start your free trial today.

Experimenting with Windows Security: Controls for Enforcing Policies

By Randy Franklin Smith

Interest continues to build around pass-the-hash and related credential artifact attacks, like those made easy by Mimikatz. The main focus surrounding this subject has been hardening Windows against credential attacks, cleaning up artifacts left behind, or at least detecting PtH and related attacks when they occur.

All of this is important – especially because end-users must logon to end-user workstations, which are the most vulnerable systems on the network.

Privileged admin accounts are another story. Even if you eliminated pass-the-hash, golden ticket, and other credential artifact attacks, you would remain vulnerable whenever admin accounts logon to insecure endpoints.  Keystroke logging, or simply starting a process under the current user’s credentials, are viable methods for stealing or hijacking the credentials of a locally logged-on user.

So, the big lessons learned with Mimikatz and privileged accounts are to avoid using privileged credentials on lower security systems, such as any system in which web browsing or email occurs, or any type of file or content is downloaded from the internet. That’s really what ESAE (aka Red Forest) is all about. But privileged accounts aren’t limited to just the domain admin accounts contemplated by the Red Forest. There’s many other privileged accounts for member servers, applications, databases, devices, and so on.

Privileged accounts should only be used from dedicated administrative workstations maintained at the same level of security as the resources being administered.

How do you implement controls that really enforce this kind of written policy? And how do you detect attempts to circumvent?

When it comes to Windows, you have a few options:

  • Logon rights defined at the local system
  • Workstation restrictions defined on the domain account
  • Authentication silos

I’ll briefly explain each one and show how you can monitor attempts to violate the policies.

Logon Rights

There’s five logon types and corresponding “allow and deny rights” for each, with “deny” overriding “allow”, of course. You define these in group policy and they are enforced by the local systems in which the group policy objects are applied. For instance, if you have an OU for end-user Workstations and you assign “deny logon locally” to an AD admin group, those members won’t be able to logon at the console of workstations regardless of their authority.

If someone tries to violate a “deny logon” right you can catch this by looking for event ID 4625 – an account failed to logon with status or sub-status code 0xc000015b. But be aware that these events are logged via the local workstation – not on the domain controller. This is another reason to use native Windows Event Collection to get events from your workstations.

Workstation Restrictions

This is something you’d have to specify on individual user accounts as shown below in Active Directory User and Computers. This control only applies to interactive logons.

In this example, I’ve allowed Tamas to logon only at SAW1 (secure admin workstation 1). Depending on how many SAWs and admins you have, this could be tedious. If Tamas tried to logon at a different workstation, that computer would log event ID 4625 – an account failed to logon with status or sub-status code 0xC0000070. The domain controller would log event ID 4769 with failure code 0xC.

Authentication Silos

This is a new feature of AD that allows you to carve out groups of computers and users, and limit those users to those computers – centrally from AD Authentication policy silos, which are containers you can assign user accounts, computer accounts, and service accounts to. You can then assign authentication policies for this container to limit where privileged accounts can be used in the domain. When accounts are in the Protected Users security group, additional controls are applied, such as the exclusive use of the Kerberos protocol. With these capabilities, you can limit high-value account usage to high-value hosts. Learn more about silos in Implementing Win 2012 R2 Authentication Silos and the Protected Users Group to Protect Privileged Accounts from Modern Attacks.

When a user tries to logon outside the silo of permitted computers, the domain controller will log event ID 4820: A Kerberos Ticket-granting-ticket (TGT) was denied because the device does not meet the access control restrictions.

Bad guys have more methods and shrink-wrapped tools than ever to steal credentials, so it’s especially important to lock down privileged accounts and prevent artifacts of their credentials from being littered throughout your network where the bad guys can find them. Windows gives you controls for enforcing such policies and provides an audit trail when someone attempts to violate them. Remember that besides just non-compliant or forgetful admins, these events may signal a bad guy who’s successfully stolen privileged credentials but is unaware of the controls you’ve put in place.  So, take these events seriously.

What’s Next in 2018? Our Prediction: SIEM-as-a-Utility

The traditional enterprise network has seen a tectonic shift in recent years thanks to cloud, mobility and now IoT. Where once enterprise data was confined to the office network and data center, it’s now expanded past its traditional perimeter. For instance, in a hospital, traditionally data resided in the data center, laptops, and desktop machines. Now, data can be resident in the x-ray machines, PCs connected to blood test analyzers, HVAC chiller units, etc. In franchise restaurants, one sees the rapid advent of digital menus, self-serve kiosks, customer Wi-Fi, and more. These digital assets have come into the market and onto the network very quickly, so that businesses can keep pace and compete for customers.

Correspondingly, the threats have also migrated — hackers now attack that less secure digital drink dispenser to then go lateral to the POS network. Often in the rush to market, securing these new assets that are now on the network has been an afterthought.

The techniques to protect and monitor these new assets are not so different. Secure the configuration, limit access, watch over logs for patterns. The ubiquity and scale of these assets, though, is tenfold, and so, traditional SIEM technology struggles with deployment, cost, and scale. Traditional SIEM was designed for large enterprise with assumptions on lots of bandwidth, CPU, and staff. These are all belied in the brave new world where all are in short supply.

Now that organizations have a 10x increase in the number of devices on the network – but most of these devices are lower value, simpler assets, with fixed networks and a limited scope of attacks that they are susceptible to — those can be managed in a more automated sense.

SIEM Will Evolve in Functionality and Ubiquity

The progression of today’s SIEM platform has seen dramatic changes. Mature platforms that have their roots in centralized log management have proven to be the species best suited to evolve, adapt, and match today’s advanced cybersecurity demands. We see this trend continuing. SIEM’s ability to centralize and aggregate billions of event logs from devices makes it a natural choice to house advanced threat lifecycle management capabilities. We’ve already seen the beginnings of SIEM taking on functionality that was originally viewed by some as a different animal—those being User and Entity Behavior Analytics (UEBA) and Security Orchestration and Automated Response (SOAR). After a quick rise in interest surrounding UEBA and SOAR solutions, these concepts have become rightly absorbed into SIEM platforms.

Evolution of SIEM

In terms of ubiquity, as the Internet of Things (IoT) explosion continues to unfold, right-sized SIEM functionality will be brought to these simpler, yet very numerous, devices. Case in point, in 2017, Netsurion brought SIEM to the point-of-sale (POS) market to answer the restaurant data breach epidemic. By folding the POS into the enterprise cybersecurity scope, the days of a data breach siphoning credit card data going undetected for months would no longer be the case.

By then coupling SIEM with IoT and branch location connectivity technology, like SD-WAN, the evolved capabilities of SIEM will be able to reach every edge of the highly-distributed enterprise.

Bringing It All Together

With SIEM platforms evolving to encompass machine learning concepts and orchestration capabilities, plus spreading to the furthest ends of the digital enterprise, we must also look at the most appropriate delivery model. By intertwining connectivity, threat, and compliance management, the delivery model that might work best for some organizations would be that the SIEM, or IT security, is delivered from an organization’s preferred ISP or managed IT service provider (MSP). The fully evolved SIEM platform will be able to deliver advanced functionality, wide integration, and lastly, MSP-friendly deliverability.

SIEM, UEBA, SOAR and Your Cybersecurity Arsenal

The evolution of Security Information and Event Management (SIEM) solutions has made a few key shifts over time. It started as simply collecting and storing logs, then morphed into correlating information with rules and alerting a team when something suspicious was happening. And now, SIEM solutions are providing advanced analytics and response automation.

Today’s advanced SIEM solutions:

  1. Incorporate purpose-built sensors to continually collect digital forensics data across an organization.
  2. Leverage artificial intelligence and machine learning to identify out-of-the-ordinary network behavior that may indicate possible malware or a data breach.

Advanced SIEM requires continual tuning to learn what is deemed abnormal behavior for a given organization.

At EventTracker, this all happens through our ISO 27001 certified Security Operations Center (SOC), where expert analysts work with this intricate data to learn the customer network and the various device types (OS, application, network devices etc.). Ideally, these experts work in tandem with the customers’ internal IT teams to understand their definition of normal network activity.

Next, based on this information and the available knowledge packs within EventTracker, we schedule suitable daily and weekly reports, along with configure alerts. The real magic happens when this data becomes “flex reports”. These reports focus on valuable information that is embedded within the description portion of the log messages. When these parameters are trended in a graph, all sorts of interesting, actionable information emerges.

User and Entity Behavior Analytics

In addition to noticing suspicious network behavior, SIEMs have evolved to include User Behavior Analytics (UBA), or User and Entity Behavior Analytics (UEBA). UBA/UEBA triggers an alert when unusual user or entity behavior occurs. This is an important feature now that compromised credentials make up 76% of all network intrusions.

When credentials are stolen, they tend to be used in unusual ways, places, and times. For instance, if a log in occurs that is outside the normal pattern, then this is immediately flagged for investigation. If user ‘‘Susan’’ usually logs in to “Workstation5” but suddenly logs in to “Server3”, then this is out of ordinary and may merit an investigation.

Security Orchestration Automation and Response (SOAR)

While alerts to suspicious behavior are necessary, the real goal is acting on the suspicious behavior as quickly and effectively as possible. That’s the next evolution of SIEM: Security Orchestration Automation and Response (SOAR).

While traditional SIEMs can “say” something, those that incorporate SOAR can “do” something.

SOARs consolidate data sources, use information provided by threat intelligence feeds, and automate responses to improve efficiency and effectiveness.

For example, with EventTracker, if an infected USB is plugged into a laptop, even if it’s off the network at the time, and malware begins to run, EventTracker will detect the insertion of the USB, as well as detect any suspicious communication to a low-reputation IP address. It will also catch any suspicious processes that begin to run. Once detected, EventTracker automatically stops the communication and the executable, preventing a potential data breach. Watch a short demo about advanced endpoint security now.

Get the Most Out of Your SIEM

As attacks continue to become more sophisticated and persistent, traditional security tools that just focus on protecting the perimeter will continue to be replaced by solutions that also have detection and response capabilities, in particular on the endpoint devices.

Learn more about the features of EventTracker’s SIEMphonic Enterprise, and sign up for a demo to learn more about our machine learning, UEBA and SOAR functionality.

You’re in the Cybersecurity Fight No Matter What: Are You Prepared?

“You’re in the fight, whether you thought you were or not”, Gen. Mike Hayden, former Director of the CIA and NSA. It may appear at first to be a scare tactic or an attempt to sow fear, uncertainty, and doubt, but truly, what this means is that it’s time to adopt the Assume Breach paradigm.

Mr. Hayden also said, “You are almost certainly penetrated.” These words ring true and it’s time to acknowledge that a breach has either already occurred or that it’s only a matter of time until it will. It is more likely that an organization has already been compromised, but just hasn’t discovered it yet. Operating with this assumption will reshape detection and response strategies in a way that pushes the limits of any organization’s infrastructure, people, processes, and technologies.

Traditional security methodologies have largely been focused on prevention. It is a defensive strategy aimed at eliminating vulnerabilities and thereby mitigating security breaches before they happen. However, as the daily news headlines bear witness, perfect protection is not practical. So, monitoring is necessary.

Many businesses think of IT security as a nice-to-have option – just a second priority to be addressed, if IT budget dollars remain. However, compliance with regulations is seen as a must-have, mostly due to fear of the auditor and potential shame or penalty in the event of an audit failure. If this mindset prevails, then up to 70% of the budget under security and compliance will be allocated to the latter, with the rest “left over” for security. And as the total amount shrinks, this leads to the undesirable phenomenon known as checkbox compliance. Article after article explains why this is a bad mindset to have.

Remember, you’re in the fight, whether you knew it or not. Accept this and compliance becomes a result of good security practice. The same IT security budget can become more effective.

If you’re overwhelmed at the prospect of having to develop, staff, train, and manage security and compliance all by yourself, there are services like EventTracker’s SIEMphonic, that will do the heavy lifting. See our “Catch of the Day” to see examples of how this service has benefited our customers.